

Welcome to tg-botting

tg-botting is a basic package to build async Telegram chatbots

Documentation Contents

	Introduction
	Prerequisites

	Installing

	Basic Concepts

	Quickstart
	A Minimal Bot

	Commands usage

	Commands
	Invocation Message

	Error Handling

	Unknow commands

	Cogs
	Quick Example

	Cog Registration

	Inspection

	API Reference
	Bot

	Message

	Event Reference

	Cogs

	Abstract Base Classes

	Utility Classes

	VK Models

	Exceptions

	Additional Classes

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is the documentation for tg-botting, a library for Python to aid
in creating applications that utilise the Telegram Bot API.

Prerequisites

tg-botting works with Python 3.6.0 or higher. Support for earlier versions of Python
is not provided. Python 2.7 or lower is not supported.

Installing

You can get the library directly from PyPI:

python3 -m pip install -U tg-botting

If you are using Windows, then the following should be used instead:

py -3 -m pip install -U tg-botting

Virtual Environments

Sometimes you want to keep libraries from polluting system installs or use a different version of
libraries than the ones installed on the system. You might also not have permissions to install libaries system-wide.
For this purpose, the standard library as of Python 3.3 comes with a concept called “Virtual Environment”s to
help maintain these separate versions.

A more in-depth tutorial is found on Virtual Environments and Packages [https://docs.python.org/3/tutorial/venv.html].

However, for the quick and dirty:

	Go to your project’s working directory:

$ cd your-bot-source
$ python3 -m venv bot-env

	Activate the virtual environment:

$ source bot-env/bin/activate

On Windows you activate it with:

$ bot-env\Scripts\activate.bat

	Use pip like usual:

$ pip install -U tg-botting

Congratulations. You now have a virtual environment all set up.

Basic Concepts

vk-botting revolves around the concept of events.
An event is something you listen to and then respond to. For example, when a message
happens, you will receive an event about it that you can respond to.

for find user_id and user_hash:

Visit https://my.telegram.org/apps and log in with your Telegram account.

Fill out the form with your details and register a new Telegram application.

Done. The API key consists of two parts: user_id and user_hash. Keep it secret.

A quick example to showcase how events work:

from tg_botting.bot import Bot

bot = Bot(['your','prefixs'], user_id, user_hash)

@bot.listener()
async def on_message_new(message):
 print(message.text)

@bot.listener()
async def on_start():
 print('start')

bot.run(bot-token)

Quickstart

This page gives a brief introduction to the library. It assumes you have the library installed,
if you don’t check the Installing portion.

A Minimal Bot

Let’s make a bot that replies to a specific message and walk you through it.

It looks something like this:

from tg_botting.bot import Bot

bot = Bot(['your','prefixs'], user_id, user_hash)

@bot.listener()
async def on_message_new(message):
 if message.text.startswith('Hello'):
 await message.send("Hello!")

@bot.listener()
async def on_start():
 print('start')

bot.run(bot-token)

Let’s name this file example_bot.py.

There’s a lot going on here, so let’s walk you through it step by step.

	The first line just imports the library, if this raises a ModuleNotFoundError or ImportError
then head on over to Installing section to properly install.

	Next, we create an instance of a Bot. This bot is our connection to Telegram.

	We then use the @bot.listener() decorator to register an event. This library has many events.
Since this library is asynchronous, we do things in a “callback” style manner.

A callback is essentially a function that is called when something happens. In our case,
the on_start() event is called when the bot has finished logging in and setting things
up and the on_message_new() event is called when the bot has received a message.

	Afterwards, we check if the Message.text starts with '$hello'. If it is,
then we reply to the sender with 'Hello!'.

	Finally, we run the bot with our login token. If you need help getting your token or creating a bot,
look in the Creating a Bot section.

Now that we’ve made a bot, we have to run the bot. Luckily, this is simple since this is just a
Python script, we can run it directly.

On Windows:

$ py -3 example_bot.py

On other systems:

$ python3 example_bot.py

Now you can try playing around with your basic bot.

Commands usage

tg-botting package has a lot of possibilities for creating commands easily.

Look at this example:

from tg_botting.bot import Bot

bot = Bot(['your','prefixs'], user_id, user_hash)

@bot.listener()
async def on_ready():
 print('start!')

@bot.listener()
async def on_message_new(message):
 if message.text.startswith('Hello'):
 await message.send('Hello!')

@bot.command(name='greet')
async def greet(message):
 await message.reply('Greetings!')

bot.run(bot-token)

As you can see, this is a slightly modified version of previous bot.

The difference is the bot.command() part

The commands are automatically processed messages. You may have noticed that we
used a prefix when creating our bot, and the commands are what this prefix
is needed for.

They are created using Bot.command() decorator, that can take several
arguments, for example name we used here. By default it will be
function name, so we didn’t really need it here, but it is just more
human-readable this way

So, for example, let’s say your prefix of choice was '!'. It can really be
anything, but we will talk about that later.

So, now when user sends ! greet to the bot, the bot will reply with
Greetings!

message here is the instance of the Message class , which is automatically
put into every command’s first argument, so be aware of it.

Message has all the information you need to process the command
You can find more information in the Message class reference

Commands

One of the most appealing aspect of the library is how easy it is to define commands and
how you can arbitrarily nest commands to have a rich command system.

Commands are defined by attaching it to a regular Python function. The command is then invoked by the user using a similar
signature to the Python function.

For example, in the given command definition:

@bot.command('foo')
async def foo(message):
 await message.send('oof!')

With the following prefix ($), it would be invoked by the user via:

$ foo some text

A command must always have one parameter, message, which is the Message.

Invocation Message

As seen earlier, every command must take a single parameter, called the objects.Message.

This parameter gives you access to something called the “invocation message”. Essentially all the information you need to
know how the command was executed. It contains a lot of useful information:

	Message.user.id to fetch the id of message author.

	Message.chat.id to fetch id of conversation.

	Message.get_text() to fetch the text of the message with out his name and prefix

	Message.send() to send a message to the conversation the command was used in.

Error Handling

When our commands fail to parse we will, by default, receive a noisy error in stderr of our console that tells us
that an error has happened and has been silently ignored.

In order to handle our errors, we must use something called an error handler. There is a global error handler (listener),
who can called :func:`

In order to handle our errors, we must use something called an error handler. There is a global error handler, called
on_command_error(). This global error handler is called for every error reached.

Most of the time however, we want to handle an error local to the command itself. on_command_error() can also handle
this error

@bot.command('ping',ignore_filter=True)
async def ping(message)
 user = message.user
 print(0/2)
 await message.send('pong')

@bot.listener(ignore_filter=True)
async def on_command_error(message, command, exception):
 await message.reply(f"some error in {''.join(traceback.format_tb(exception.__traceback__))}")

The first parameter of the error handler is Message, because of which the error was caused,
the second parameter is Command - the command in which the error was caused,
and the third parameter is `Exception <https://docs.python.org/3/tutorial/errors.html >`_ - an error that was called in the command.

Unknow commands

this method will be called when the user uses a command that the bot does’t know.
Eg:

@bot.listener()
async def on_unknow_command(message):
 await message.reply('the bot doen't know this command, who called {message.text}')

also, almost all listeners and commands receive only one parameter as input Message.
You can find more about other handlers below.

Cogs

There comes a point in your bot’s development when you want to organize a collection of commands, listeners, and some state into one class. Cogs allow you to do just that.

The gist:

	Each cog is a Python class Cog.

	Every command is marked with the cog.command() decorator.

	Every listener is marked with the cog.listener() decorator.

	Cogs are then registered with the Bot.add_cog() call.

Quick Example

This example cog defines a Greetings category for your commands, with a single command named hello as well as a listener to listen to an Event.

from tg_botting.cog import Cog, command, lisener

class Greetings(Cog):
 def __init__(self, bot):
 self.bot = bot
 self._last_user = None

 @listener()
 async def on_new_member(self, message):
 user = message.new_chat_member
 # or user = message.new_chat_participant
 # I recommend using user = message.new_chat_member or message.new_chat_participant
 await message.send('Welcome {}!'.format(user.first_name))

 @command('hello')
 async def hello(self, message):
 """Says hello"""
 user_id = message.user.id
 # if you need, you can try to load user by pyrogram who has in tg-botting
 # user = await User.load(user_id)
 if self._last_user is None or self._last_user != user_id:
 await message.send('Hello {}!'.format(user.first_name))
 else:
 await message.send('Hello {}... This feels familiar.'.format(user.first_name))
 self._last_user = user_id

A couple of technical notes to take into consideration:

	All commands must now take a self parameter to allow usage of instance attributes that can be used to maintain state.

Cog Registration

Once you have defined your cogs, you need to tell the bot to register the cogs to be used. We do this via the add_cog() method.

bot.add_cog(Greetings(bot))

This binds the cog to the bot, adding all commands and listeners to the bot automatically.

Inspection

Since cogs ultimately are classes, we have some tools to help us inspect certain properties of the cog.

To get a list of commands, we can refer to dict inside the Bot class

>>> commands = bot.all_commands().get(cog_class_name)
>>> print([c.name for c in commands])

API Reference

Bot

Message

Event Reference

This page outlines the different types of events listened by Bot.

There are two ways to register an event, the first way is through the use of
Bot.listen(). The second way is through subclassing Bot and
overriding the specific events. For example:

import vk_botting

class MyBot(vk_botting.Bot):
 async def on_message_new(self, message):
 if message.from_id == self.group.id:
 return

 if message.text.startswith('$hello'):
 await message.send('Hello World!')

If an event handler raises an exception, on_error() will be called
to handle it, which defaults to print a traceback and ignoring the exception.

Warning

All the events must be a |coroutine_link|_. If they aren’t, then you might get unexpected
errors. In order to turn a function into a coroutine they must be async def
functions.

	
on_ready()

	Called when the bot is done preparing the data received from VK. Usually after login is successful
and the Bot.group and co. are filled up.

	
on_error(event, *args, **kwargs)

	Usually when an event raises an uncaught exception, a traceback is
printed to stderr and the exception is ignored. If you want to
change this behaviour and handle the exception for whatever reason
yourself, this event can be overridden. Which, when done, will
suppress the default action of printing the traceback.

The information of the exception raised and the exception itself can
be retrieved with a standard call to sys.exc_info().

If you want exception to propagate out of the Bot class
you can define an on_error handler consisting of a single empty
py:raise. Exceptions raised by on_error will not be
handled in any way by Bot.

	Parameters:

	
	event (str) – The name of the event that raised the exception.

	args – The positional arguments for the event that raised the
exception.

	kwargs – The keyword arguments for the event that raised the
exception.

	
on_command_error(ctx, error)

	An error handler that is called when an error is raised
inside a command either through user input error, check
failure, or an error in your own code.

A default one is provided (Bot.on_command_error()).

	Parameters:

	
	ctx (Context) – The invocation context.

	error (CommandError derived) – The error that was raised.

	
on_command(ctx)

	An event that is called when a command is found and is about to be invoked.

This event is called regardless of whether the command itself succeeds via
error or completes.

	Parameters:

	ctx (Context) – The invocation context.

	
on_command_completion(ctx)

	An event that is called when a command has completed its invocation.

This event is called only if the command succeeded, i.e. all checks have
passed and the user input it correctly.

	Parameters:

	ctx (Context) – The invocation context.

	
on_message_new(message)

	Called when bot receives a message.

	Parameters:

	message (message.Message) – Received message.

	
on_message_event(event)

	Called when a callback button is pressed.

	Parameters:

	event – Received event.

	
on_message_reply(message)

	Called when bot replies with a message.

	Parameters:

	message (message.Message) – Sent message.

	
on_message_edit(message)

	Called when message is edited.

	Parameters:

	message (message.Message) – Edited message.

	
on_message_typing_state(state)

	Called when typing state is changed (e.g. someone starts typing).

	Parameters:

	state (states.State) – New state.

	
on_conversation_start(message)

	Called when user starts conversation using special button.

	Parameters:

	message (message.Message) – Message sent when conversation is started.

	
on_chat_kick_user(message)

	Called when user is kicked from the chat.

	Parameters:

	message (message.Message) – Message sent when user is kicked.

	
on_chat_invite_user(message)

	Called when user is invited to the chat.

	Parameters:

	message (message.Message) – Message sent when user is invited.

	
on_chat_invite_user_by_link(message)

	Called when user is invited to the chat by link.

	Parameters:

	message (message.Message) – Message sent when user is invited.

	
on_chat_photo_update(message)

	Called when chat photo is updated.

	Parameters:

	message (message.Message) – Message sent when photo is updated.

	
on_chat_photo_remove(message)

	Called when chat photo is removed.

	Parameters:

	message (message.Message) – Message sent when photo is removed.

	
on_chat_create(message)

	Called when chat is created.

	Parameters:

	message (message.Message) – Message sent when chat is created.

	
on_chat_title_update(message)

	Called when chat title is updated.

	Parameters:

	message (message.Message) – Message sent when chat title is updated.

	
on_chat_pin_message(message)

	Called when message is pinned in chat.

	Parameters:

	message (message.Message) – Message sent when message is pinned in chat.

	
on_chat_unpin_message(message)

	Called when message is unpinned in chat.

	Parameters:

	message (message.Message) – Message sent when message is unpinned in chat.

	
on_message_allow(user)

	Called when user allows getting messages from bot.

	Parameters:

	user (user.User) – User who allowed messages.

	
on_message_deny(user)

	Called when user denies getting messages from bot.

	Parameters:

	user (user.User) – User who denied messages.

	
on_photo_new(photo)

	Called when new photo is uploaded to bot group.

	Parameters:

	photo (attachments.Photo) – Photo that got uploaded.

	
on_audio_new(audio)

	Called when new audio is uploaded to bot group.

	Parameters:

	audio (attachments.Audio) – Audio that got uploaded.

	
on_video_new(video)

	Called when new video is uploaded to bot group.

	Parameters:

	video (attachments.Video) – Video that got uploaded.

	
on_photo_comment_new(comment)

	Called when new comment is added to photo.

	Parameters:

	comment (group.PhotoComment) – Comment that got send.

	
on_photo_comment_edit(comment)

	Called when comment on photo gets edited.

	Parameters:

	comment (group.PhotoComment) – Comment that got edited.

	
on_photo_comment_restore(comment)

	Called when comment on photo is restored.

	Parameters:

	comment (group.PhotoComment) – Comment that got restored.

	
on_photo_comment_delete(comment)

	Called when comment on photo is deleted.

	Parameters:

	comment (group.DeletedPhotoComment) – Comment that got deleted.

	
on_video_comment_new(comment)

	Called when new comment is added to video.

	Parameters:

	comment (group.VideoComment) – Comment that got send.

	
on_video_comment_edit(comment)

	Called when comment on video gets edited.

	Parameters:

	comment (group.VideoComment) – Comment that got edited.

	
on_video_comment_restore(comment)

	Called when comment on video is restored.

	Parameters:

	comment (group.VideoComment) – Comment that got restored.

	
on_video_comment_delete(comment)

	Called when comment on video is deleted.

	Parameters:

	comment (group.DeletedVideoComment) – Comment that got deleted.

	
on_market_comment_new(comment)

	Called when new comment is added to market.

	Parameters:

	comment (group.MarketComment) – Comment that got send.

	
on_market_comment_edit(comment)

	Called when comment on market gets edited.

	Parameters:

	comment (group.MarketComment) – Comment that got edited.

	
on_market_comment_restore(comment)

	Called when comment on market is restored.

	Parameters:

	comment (group.MarketComment) – Comment that got restored.

	
on_market_comment_delete(comment)

	Called when comment on market is deleted.

	Parameters:

	comment (group.DeletedMarketComment) – Comment that got deleted.

	
on_board_post_new(comment)

	Called when new post is added to board.

	Parameters:

	comment (group.BoardComment) – New post on the board.

	
on_board_post_edit(comment)

	Called when post on board gets edited.

	Parameters:

	comment (group.BoardComment) – Post that got edited.

	
on_board_post_restore(comment)

	Called when post on board is restored.

	Parameters:

	comment (group.BoardComment) – Post that got restored.

	
on_board_post_delete(comment)

	Called when post on board is deleted.

	Parameters:

	comment (group.DeletedBoardComment) – Post that got deleted.

	
on_wall_post_new(post)

	Called when new post in added to wall.

	Parameters:

	post (group.Post) – Post that got added.

	
on_wall_repost(post)

	Called when wall post is reposted.

	Parameters:

	post (group.Post) – Post that got reposted.

	
on_wall_reply_new(comment)

	Called when new comment is added to wall.

	Parameters:

	comment (group.WallComment) – Comment that got send.

	
on_wall_reply_edit(comment)

	Called when comment on wall gets edited.

	Parameters:

	comment (group.WallComment) – Comment that got edited.

	
on_wall_reply_restore(comment)

	Called when comment on wall is restored.

	Parameters:

	comment (group.WallComment) – Comment that got restored.

	
on_wall_reply_delete(comment)

	Called when comment on wall is deleted.

	Parameters:

	comment (group.DeletedWallComment) – Comment that got deleted.

	
on_group_join(user, join_type)

	Called when user joins bot group.

	Parameters:

	
	user (user.User) – User that joined the group.

	join_type (str) – User join type. Can be ‘join’ if user just joined, ‘unsure’ for events, ‘accepted’ if user was invited, ‘approved’ if user join request was approved or ‘request’ if user requested to join

	
on_group_leave(user, self)

	Called when user leaves bot group.

	Parameters:

	
	user (user.User) – User that left the group.

	self (bool) – If user left on their own (True) or was kicked (False).

	
on_user_block(user)

	Called when user is blocked in bot group.

	Parameters:

	user (user.BlockedUser) – User that was blocked.

	
on_user_unblock(user)

	Called when user is unblocked in bot group.

	Parameters:

	user (user.UnblockedUser) – User that was unblocked.

	
on_poll_vote_new(vote)

	Called when new poll vote is received.

	Parameters:

	vote (group.PollVote) – New vote.

	
on_group_officers_edit(edit)

	Called when group officers are edited.

	Parameters:

	edit (group.OfficersEdit) – New edit.

	
on_unknown(payload)

	Called when unknown event is received.

	Parameters:

	payload (dict) – Json payload of the event.

Cogs

Cog

CogMeta

Abstract Base Classes

An py:abstract base class (also known as an abc) is a class that models can inherit
to get their behaviour. The Python implementation of an abc is
slightly different in that you can register them at run-time. Abstract base classes cannot be instantiated.
They are mainly there for usage with py:isinstance() and py:issubclass().

This library has a module related to abstract base classes, some of which are actually from the abc standard
module, others which are not.

Utility Classes

Attachment

Keyboard

Cooldown

VK Models

Models are classes that are received from VK and are not meant to be created by
the user of the library.

Danger

The classes listed below are not intended to be created by users and are also
read-only.

For example, this means that you should not make your own User instances
nor should you modify the User instance yourself.

User

Group

Message

MessageEvent

Exceptions

Additional Classes

Index

 B
 | O

B

 	
 	
 built-in function

 	on_audio_new()

 	on_board_post_delete()

 	on_board_post_edit()

 	on_board_post_new()

 	on_board_post_restore()

 	on_chat_create()

 	on_chat_invite_user()

 	on_chat_invite_user_by_link()

 	on_chat_kick_user()

 	on_chat_photo_remove()

 	on_chat_photo_update()

 	on_chat_pin_message()

 	on_chat_title_update()

 	on_chat_unpin_message()

 	on_command()

 	on_command_completion()

 	on_command_error()

 	on_conversation_start()

 	on_error()

 	on_group_join()

 	on_group_leave()

 	on_group_officers_edit()

 	on_market_comment_delete()

 	on_market_comment_edit()

 	on_market_comment_new()

 	on_market_comment_restore()

 	on_message_allow()

 	on_message_deny()

 	on_message_edit()

 	on_message_event()

 	on_message_new()

 	on_message_reply()

 	on_message_typing_state()

 	on_photo_comment_delete()

 	on_photo_comment_edit()

 	on_photo_comment_new()

 	on_photo_comment_restore()

 	on_photo_new()

 	on_poll_vote_new()

 	on_ready()

 	on_unknown()

 	on_user_block()

 	on_user_unblock()

 	on_video_comment_delete()

 	on_video_comment_edit()

 	on_video_comment_new()

 	on_video_comment_restore()

 	on_video_new()

 	on_wall_post_new()

 	on_wall_reply_delete()

 	on_wall_reply_edit()

 	on_wall_reply_new()

 	on_wall_reply_restore()

 	on_wall_repost()

O

 	
 	
 on_audio_new()

 	built-in function

 	
 on_board_post_delete()

 	built-in function

 	
 on_board_post_edit()

 	built-in function

 	
 on_board_post_new()

 	built-in function

 	
 on_board_post_restore()

 	built-in function

 	
 on_chat_create()

 	built-in function

 	
 on_chat_invite_user()

 	built-in function

 	
 on_chat_invite_user_by_link()

 	built-in function

 	
 on_chat_kick_user()

 	built-in function

 	
 on_chat_photo_remove()

 	built-in function

 	
 on_chat_photo_update()

 	built-in function

 	
 on_chat_pin_message()

 	built-in function

 	
 on_chat_title_update()

 	built-in function

 	
 on_chat_unpin_message()

 	built-in function

 	
 on_command()

 	built-in function

 	
 on_command_completion()

 	built-in function

 	
 on_command_error()

 	built-in function

 	
 on_conversation_start()

 	built-in function

 	
 on_error()

 	built-in function

 	
 on_group_join()

 	built-in function

 	
 on_group_leave()

 	built-in function

 	
 on_group_officers_edit()

 	built-in function

 	
 on_market_comment_delete()

 	built-in function

 	
 on_market_comment_edit()

 	built-in function

 	
 on_market_comment_new()

 	built-in function

 	
 on_market_comment_restore()

 	built-in function

 	
 on_message_allow()

 	built-in function

 	
 	
 on_message_deny()

 	built-in function

 	
 on_message_edit()

 	built-in function

 	
 on_message_event()

 	built-in function

 	
 on_message_new()

 	built-in function

 	
 on_message_reply()

 	built-in function

 	
 on_message_typing_state()

 	built-in function

 	
 on_photo_comment_delete()

 	built-in function

 	
 on_photo_comment_edit()

 	built-in function

 	
 on_photo_comment_new()

 	built-in function

 	
 on_photo_comment_restore()

 	built-in function

 	
 on_photo_new()

 	built-in function

 	
 on_poll_vote_new()

 	built-in function

 	
 on_ready()

 	built-in function

 	
 on_unknown()

 	built-in function

 	
 on_user_block()

 	built-in function

 	
 on_user_unblock()

 	built-in function

 	
 on_video_comment_delete()

 	built-in function

 	
 on_video_comment_edit()

 	built-in function

 	
 on_video_comment_new()

 	built-in function

 	
 on_video_comment_restore()

 	built-in function

 	
 on_video_new()

 	built-in function

 	
 on_wall_post_new()

 	built-in function

 	
 on_wall_reply_delete()

 	built-in function

 	
 on_wall_reply_edit()

 	built-in function

 	
 on_wall_reply_new()

 	built-in function

 	
 on_wall_reply_restore()

 	built-in function

 	
 on_wall_repost()

 	built-in function

Creating a Bot

In order to work with the library and the Telegram Bot API in general, we must first create a Telegram Bot.

Creating a Bot is a pretty straightforward process.

Make sure that you have user_id and user_hash, as well as the bot token that issues @BotFather in Telegram

Warning

It should be worth noting that this token is essentially yours bot’s
password. You should never share this to someone else. In doing so,
someone can log into your bot and do malicious things, such as removing
wall posts, spamming messages or even banning all members.

The possibilities are endless, so do not share this token.

If you accidentally leaked your token, click the “Revoke current token” button as soon
as possible. This revokes your old token and then generate a new one.
Now you need to use the new token to login.

And that’s it. You now have a bot account and you can login with that token.

 nav.xhtml

 Table of Contents

 		
 Welcome to tg-botting

 		
 Introduction

 		
 Prerequisites

 		
 Installing

 		
 Virtual Environments

 		
 Basic Concepts

 		
 Quickstart

 		
 A Minimal Bot

 		
 Commands usage

 		
 Commands

 		
 Invocation Message

 		
 Error Handling

 		
 Unknow commands

 		
 Cogs

 		
 Quick Example

 		
 Cog Registration

 		
 Inspection

 		
 API Reference

 		
 Bot

 		
 Message

 		
 Event Reference

 		
 on_ready()

 		
 on_error()

 		
 on_command_error()

 		
 on_command()

 		
 on_command_completion()

 		
 on_message_new()

 		
 on_message_event()

 		
 on_message_reply()

 		
 on_message_edit()

 		
 on_message_typing_state()

 		
 on_conversation_start()

 		
 on_chat_kick_user()

 		
 on_chat_invite_user()

 		
 on_chat_invite_user_by_link()

 		
 on_chat_photo_update()

 		
 on_chat_photo_remove()

 		
 on_chat_create()

 		
 on_chat_title_update()

 		
 on_chat_pin_message()

 		
 on_chat_unpin_message()

 		
 on_message_allow()

 		
 on_message_deny()

 		
 on_photo_new()

 		
 on_audio_new()

 		
 on_video_new()

 		
 on_photo_comment_new()

 		
 on_photo_comment_edit()

 		
 on_photo_comment_restore()

 		
 on_photo_comment_delete()

 		
 on_video_comment_new()

 		
 on_video_comment_edit()

 		
 on_video_comment_restore()

 		
 on_video_comment_delete()

 		
 on_market_comment_new()

 		
 on_market_comment_edit()

 		
 on_market_comment_restore()

 		
 on_market_comment_delete()

 		
 on_board_post_new()

 		
 on_board_post_edit()

 		
 on_board_post_restore()

 		
 on_board_post_delete()

 		
 on_wall_post_new()

 		
 on_wall_repost()

 		
 on_wall_reply_new()

 		
 on_wall_reply_edit()

 		
 on_wall_reply_restore()

 		
 on_wall_reply_delete()

 		
 on_group_join()

 		
 on_group_leave()

 		
 on_user_block()

 		
 on_user_unblock()

 		
 on_poll_vote_new()

 		
 on_group_officers_edit()

 		
 on_unknown()

 		
 Cogs

 		
 Cog

 		
 CogMeta

 		
 Abstract Base Classes

 		
 Utility Classes

 		
 Attachment

 		
 Keyboard

 		
 Cooldown

 		
 VK Models

 		
 User

 		
 Group

 		
 Message

 		
 MessageEvent

 		
 Exceptions

 		
 Additional Classes

_static/plus.png

_static/file.png

_static/minus.png

